1-ANALYSE DU PRODUIT SCALAIRE

1-1-FORME ANALYTIQUE DU PRODUIT SCALAIRE

a-PROPRIETE

Le plan (P) est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . Si $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$

Alors
$$\vec{u} \cdot \vec{v} = xx' + yy'$$

Démonstration

b-EXERCICE

1- soient $\vec{u}=\vec{2i}-\vec{3j}$ et $\vec{v}=\vec{5i}+\vec{7j}$, calculer $\vec{u}\cdot\vec{v}$

2-Soient $\stackrel{\rightarrow}{u}=(2m-1)\stackrel{\rightarrow}{i}+4m\stackrel{\rightarrow}{j}$ et $\stackrel{\rightarrow}{v}=\stackrel{\rightarrow}{3i}-\stackrel{\rightarrow}{2j}$, déterminer m pour que $\stackrel{\rightarrow}{u}\perp\stackrel{\rightarrow}{v}$

1-2-NORME ET DISTANCE

a-PROPRIETE

(P) est rapporté à un repère orthonormé (O, \vec{i}, \vec{j})

i- Si
$$\stackrel{\rightarrow}{u}=\stackrel{\rightarrow}{xi}+\stackrel{\rightarrow}{yj}$$
 alors $\left\|\stackrel{\rightarrow}{u}\right\|=\sqrt{x^2+y^2}$

ii- Si
$$A(x_{\!\scriptscriptstyle A},y_{\!\scriptscriptstyle A})$$
 et $B(x_{\!\scriptscriptstyle B},y_{\!\scriptscriptstyle B})$ alors $AB=\sqrt{(x_{\!\scriptscriptstyle B}-x_{\!\scriptscriptstyle A})^2+(y_{\!\scriptscriptstyle B}-y_{\!\scriptscriptstyle A})^2}$

b-EXERCICE

1-Soient $\stackrel{\rightarrow}{u}=2\stackrel{\rightarrow}{i}+5\stackrel{\rightarrow}{j}$; $\stackrel{\rightarrow}{v}=(2m-1)\stackrel{\rightarrow}{i}+3\stackrel{\rightarrow}{j}$; calculer $\left\|\stackrel{\rightarrow}{u}\right\|$ et $\left\|\stackrel{\rightarrow}{v}\right\|$. Déterminer m pour que

$$\left\| \overrightarrow{v} \right\| = \sqrt{13}$$

2-Soient A(-1,3),B(2,6) et C(2m,m-1), déterminer m pour que ABC soit un triangle isocèle en

1-3-INEGALITE DE GAUCHY-SCHWARTZ

PROPRIETE

Soient u; v deux vecteurs

i- on a l'inégalité suivante : $\left| \vec{u} \cdot \vec{v} \right| \leq \left\| \vec{u} \right\| \cdot \left\| \vec{v} \right\|$

ii-on a $|\vec{u}\cdot\vec{v}| = |\vec{u}| \cdot |\vec{v}|$ si et seulement si \vec{u},et,\vec{v} sont colinéaires

démonstration

$$\left|\cos(\vec{u}, \vec{v})\right| \le 1$$

1-4-INEGALITE TRIANGULAIRE

PROPRIETE

Soient $\overrightarrow{u}, et, \overrightarrow{v}$ deux vecteurs

i- on a l'inégalité suivante : $\left\| \vec{u} + \vec{v} \right\| \leq \left\| \vec{u} \right\| + \left\| \vec{v} \right\|$

ii- on a $\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$ si et seulement si l \vec{u} et \vec{v} sont colinéaires et ont même sens

2-PRODUIT SCALAIRE ET LES ANGLES

2-1-COORDONNEES POLAIRES D'UN VECTEUR

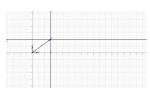
PROPRIETE

Le plan (P) est rapporté à un repère orthonormé ((O,\vec{i},\vec{j}) . Si α est la mesure de l'angle (\vec{u},\vec{v}) alors $\vec{u} = \left\| \vec{u} \right\| (\cos(\alpha)\vec{i} + \sin(\alpha)\vec{j})$

Soit
$$\overset{
ightharpoonup}{u}=\overset{
ightharpoonup}{xi}+\overset{
ightharpoonup}{yj}$$
 , on a

$$\cos(\alpha) = \frac{x}{\|\vec{u}\|}$$

$$\sin(\alpha) = \frac{y}{\left\| \overrightarrow{u} \right\|}$$



$$2 - 2 - CALCUL:COS(\overrightarrow{U},\overrightarrow{V});SIN(\overrightarrow{U},\overrightarrow{V})$$

a-PROPRIETE

Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , on a :

$$\cos(\vec{u},\vec{v}) = \frac{\overset{\rightarrow}{u\cdot v}}{\left\|\vec{u}\right\|\left\|\vec{v}\right\|} \quad \text{et} \quad \sin(\vec{u},\vec{v}) = \frac{\det(\vec{u},\vec{v})}{\left\|\vec{u}\right\|\left\|\vec{v}\right\|}$$

Démonstration

Utilisons:
$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$
 et $\det(u,v) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'$

b-EXERCICE

1-calculer $\cos(\vec{u},\vec{v})$ et $\sin(\vec{u},\vec{v})$ tels que $\vec{u}=-\vec{i}+2\vec{j}$ et $\vec{v}=\vec{3i}+4\vec{j}$

2-on considère les points A(1,3) ; B(3,1) et C(-3,-1), calculer $\cos(\overrightarrow{AB},\overrightarrow{AC})$ et $\sin(\overrightarrow{AB},\overrightarrow{AC})$

2-3-SURFACE D'UN TRIANGLE

a-PROPRIETE

Le plan (P) est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , soit ABC un triangle, on a :

$$S = \frac{1}{2} \left| \det(\vec{u}, \vec{v}) \right|$$

Démonstration

Utilisons la définition du sinus de l'ange (u,v)

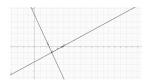
b-EXERCICE

Soient A(1,2); B(-1,1) et C(3,-2); calculer la surface du tringle ABC: SABC

3-EQUATION D'UNE DROITE

a-DEFINITION

Soit (D) une droite dans le plan (P). Tout vecteur non nul orthogonal au vecteur directeur de la droite est appelé vecteur normal de (D)



<u>b-PROPRIETE</u>

Le plan (P) est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , et (D) une droite d'équation :

$$ax + by + c = 0$$
 , le vecteur $n(a,b)$ est un vecteur normal de (D)

Démonstration

$$\overrightarrow{u}(-b,a); \overrightarrow{n}(a,b)$$

3-2-L'EQUATION DE LA DROITE

a-PROPRIETE

Le plan est rapporté à un repère orthonormé (O,\vec{i},\vec{j}) . Si (D) est une droite qui passe par $A(x_A,y_A)$ et $\vec{n}(a,b)$ son vecteur normal, alors $:a(x-x_A)+b(y-y_A)=0$ est l'équation de la droite (D)

Démonstration

3-3-PERPENDICULARITE DE DEUX DROITES

a-PROPRIETE

Le plan (P) est rapporté à un repère orthonormé (O,\vec{i},\vec{j}) . On considère deux droites :

(D) : ax+by+c=0 et (D') : a'x+b'y+c'=0. (D) et (D') sont perpendiculaires si et seulement

si :aa'+bb'=0.
$$(D)\perp (D^{'}) \Leftrightarrow \stackrel{\rightarrow}{n}\perp \stackrel{\rightarrow}{n^{'}} \Leftrightarrow \stackrel{\rightarrow}{n}\cdot \stackrel{\rightarrow}{n^{'}} = 0$$

b-EXERCICE

Soit (D) une droite passant par A(1,-1) et de vecteur normal $\vec{n}(5,2)$

1-donner une équation de la droite (D)

2-Soit (D) d'équation $y=\frac{2}{5}x-3$, montrer que (D) et (D) sont perpendiculaires

3-Soit (D $^{''}$) d'équation $\ (2m-3)x-5y+11=0$, déterminer m pour que $\ (D)\perp(D^{"})$

3-4-DISTANCE D4UN POINT A UNE DROITE

a-PROPRIETE

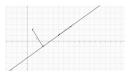
(P) est rapporté à un repère orthonormé (O,i,j) . Soit (D) une droite d'équation ax+by+c=0 Tel que $:(a,b)\neq (0,0)$, et $A(x_{_{\! A}},y_{_{\! A}})$ un point du plan (P), la distance du point à la droite (D)

est définie par :
$$d(A,(D)) = \frac{\left|ax_A + b_A + c\right|}{\sqrt{a^2 + b^2}}$$

Démonstration

$$\overrightarrow{AH} = \alpha \overrightarrow{n} \ \text{ et } H \in (D) \Leftrightarrow ax_{_{\! H}} + by_{_{\! H}} + c = 0 \ \text{ et } \quad x_{_{\! H}} = x_{_{\! A}} + \alpha a \ ; \ y_{_{\! H}} = y_{_{\! A}} + \alpha b$$

$$\alpha = \frac{-(ax_A + by_A + c)}{a^2 + b^2}$$
$$d(A, (D)) = \left\| \overrightarrow{AH} \right\| = \left| \alpha \right| \left\| \overrightarrow{n} \right\|$$



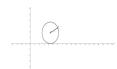
b-EXERCICE

- (P) est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) . Soit A(2,-3) un point du plan, et (D) une droite qui passe par A et de vecteur normal $\vec{n}(3,-2)$
- 1-déterminer l'équation de la droite (D)
- 2-soit B(1,5) un point du plan , calculer la distance de B à la droite (D)

4-LE CERCLE

4-1-DEFINITION

Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . Ω est un point de (P) et R un réel positif .Le cercle (C) de centre Ω et de rayon R est l'ensemble des points M de (P) tels que : Ω M=R, on le note par C(Ω ,R)



4-2-L'EQUATION DU CERCLE

a-PROPRIETE

Le plan est muni d'un repère orthonormé (O,\vec{i},\vec{j}) . L'équation cartésienne du cercle de centre Ω (a,b) et de rayon R est : $(x-a)^2+(y-b)^2=R^2$

b-EXERCICE

- 1-Soit (C) un cercle de centre Ω (3,4) et de rayon R=2, écrire l'équation du cercle (C)
- 2-écrire l'équation du cercle (C) de centre Ω (-2,1) et qui passe par le point A(4,-2)

4-3-EQUATION D'UN CERCLE DEFINI PAR SON DIAMETRE

a-PROPRIETE

Le plan (P) est rapporté à un repère orthonormé (O, i, j). A et B deux points du plan i- Le cercle (C) dont le diamètre est [AB] est l'ensemble des points M tels que :

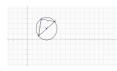
$$MA \cdot MB = 0$$

ii-soient $A\!(x_{\!\scriptscriptstyle A},y_{\!\scriptscriptstyle A})$ et $B\!(x_{\!\scriptscriptstyle B},y_{\!\scriptscriptstyle B})$

M(x,y) un point du cercle (C)

L'équation du cercle (C) est :

$$(\boldsymbol{x} - \boldsymbol{x_{\!\scriptscriptstyle A}})(\boldsymbol{x} - \boldsymbol{x_{\!\scriptscriptstyle B}}) + (\boldsymbol{y} - \boldsymbol{y_{\!\scriptscriptstyle A}})(\boldsymbol{y} - \boldsymbol{y_{\!\scriptscriptstyle B}}) = 0$$



b-EXERCICE

Soient A(-1,4) et B(3,1) deux points du plan (P)

1-déterminer l'équation du cercle (C) dont le diamètre [AB]

2-déterminer le centre Ω et le rayon du cercle (C)

4-4-CERCLE DEFINI PAR TROIS POINTS

a-PROPRIETE

Soient A,B et C trois points non alignés du plan (P). il existe un cercle unique (C) qui passe par les points A,B et C. le centre de cercle (C) est le point Ω l'intersection des médiatrices du triangle ABC et son rayon est R= ΩA

b-EXERCICE

Soient A(2,1), B(4,-1) et C(0,-3) des points du plans . déterminer l'équation du cercle (C)

4-5-REPRESENTATION PARAMETRIQUE DU CERCLE

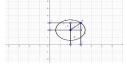
a-PROPRIETE

(P) est rapporté au repère orthonormé (O, \vec{i}, \vec{j}) .

Le cercle (C) de centre $\,\Omega(a,b)\,\,$ et de rayon R

est l'ensemble des points M(x,y) tels que :

$$\begin{cases} x = a + R\cos(\alpha) \\ y = b + R\sin(\alpha) \end{cases}$$



$\frac{4-6-L'ENSEMBLE\ DES\ POINTS\ M(x,y)\ D'EQUATION: x^2+y^2-2ax-2by+c=0}{a-PROPRIETE}$

Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) , soient a, b et c des réels. L'équation :

 $x^2+y^2-2ax-2by+c=0$ est une équation d'un cercle si et seulement si :

$$a^2 + b^2 - c \ge 0$$

Démonstration

b-EXERCICE

Soit l'équation : $x^2+y^2+2x-6y-3=0\,$ montrer que c'est l'équation d'un cercle en déterminant le centre et le rayon

4-7-L'INTERIEUR ET L'EXTERIEUR DU CERCLE

a-DEFINITION

(P) est muni d'un repère orthonormé $(\vec{O},\vec{i},\vec{j})$, et (C) un cercle de centre Ω et de rayon R, M est un point du plan.

i- Si $\Omega M \succ R$ alors M se trouve à l'extérieur du cercle (C)

ii- Si $\Omega M \prec R$ alors M se trouve à l'intérieur du cercle (C)

iii- Si $\Omega M=R$ alors M appartient au cercle (C)

b-EXERCICE

1- Soit (C) le cercle d'équation : $x^2+y^2+x-3y-\frac{3}{2}=0$

i- déterminer le centre Ω et le rayon du cercle (C)

ii- soit A(-1,2), calculer ΩA , et déterminer le lieu de A

2- Soit (C) le cercle d'équation : $x^2 + y^2 - 2x + 2y - 7 = 0$

i- déterminer le centre Ω et le rayon du cercle (C)

ii- tracer (C) et la droite (D) d'équation : x-y=0

iii- résoudre graphiquement le système suivant

$$\begin{cases} x^2 + y^2 - 2x + 2y - 7 < 0 \\ x - y > 0 \end{cases}$$

4-8-L'INTERSECTION DE LA DROITE ET DU CERCLE

a-PROPRIETE

Le plan (P) est rapporté à un repère orthonormé (O,\vec{i},\vec{j}) . Soit (C) un cercle de centre Ω et de rayon R, (D) une droite dans le plan. Soit d la distance du point Ω à la droite (D) i- si $d \succ R$ alors (D) ne coupe pas (C)

ii- si $d \prec R$ alors (D) coupe (C) en deux points

iii- si $\,d=R\,$ alors (D) coupe (C) en un seul point A, on dit que (D) est tangent à (C) au point A b-EXERCICE

Etudier la position relative de la droite (D) et le cercle (C) dans les cas suivants :

i- (C):
$$x^2 + y^2 - 4x + 2y = 0$$
 et $(D): 2x - y = 0$

ii- (C) :
$$(x+2)^2 + (y+2)^2 = 2$$
 et (D) : $x-y-2 = 0$

iii- (C):
$$x^2 + y^2 - 2x + 4y - 11 = 0$$
 et (D) : $x + y - 3 = 0$

4-9-L'EQUATION DE LA TANGENTE AU CERCLE EN UN DE SES POINTS

a-PROPRIETE

Soit (C) un cercle de centre $\,\Omega\,$ et de rayon R, et a un point du cercle (C). Soit $\,(\Delta)\,$ la tangente au cercle (C) au point A, on a : $M\in(\Delta)\Leftrightarrow\overrightarrow{AM}\cdot\overrightarrow{A\Omega}=0\,$.

Si
$$\Omega(a,b)$$
 ; $A\!(x_{\!_A},y_{\!_A})$ et $M(x,y)$, alors on a : $(x-x_{\!_A})(a-x_{\!_A})+(y-y_{\!_A})(b-y_{\!_A})=0$
 b-EXERCICE

Soit (C) :
$$x^2+y^2+x-2y=0$$
 et $Aiggl(\frac{1}{2},\frac{1}{2}iggr)$ un point du plan

i- déterminer le centre et le rayon du cercle (C)

ii-montrer que A appartient à (C)

iii- déterminer l'équation de la tangente au cercle (C) au point A