ARITHMETIQUE 1

Dans ce chapitre, tous les nombres sont des entiers naturels, ils appartiennent à $\mathbb N$

1- NOMBRES PAIRS- NOMBRES IMPAIRS

1-1-DEFINITION

Les nombres: 0-1-2-3-4-5-6-7-8-9 sont appelés des chiffres

1-2- EXERCICE

1-Déterminer les nombres pairs et les nombres impairs des nombres suivant: 2311, 43, 3524, 232, 135, 1900, 79, 426, 707, 38

2- Ecrire les nombres ci-dessus sous forme de 2p ou 2p+1

1-3- REMARQUE

1-Les nombres pairs ont pour unité les chiffres : 0-2-4-6-8

2- Les nombres impairs ont pour unité les chiffres: 1-3-5-7-9

1-4-DEFINITION

1- Tout nombre entier naturel n divisible par 2 est appelé nombre pair, il s'écrit sous forme de n=2p où $p\in\mathbb{N}$

2-Tout nombre entier naturel n qui n'ai pas divisible par 2 est appelé nombre impair, il s'écrit sous forme de n=2p+1 où $p\in\mathbb{N}$

1-5-EXERCICE

Soit n un entier naturel, étudier la parité des nombre A=n(n+1) et $B=n^2+3n+4$ selon les valeurs de n

INDICATION

i- si n est pair c'est-à-dire n=2p, calculer A et B en fonction de p

ii- i- si n est impair c'est-à-dire n=2p+1, calculer A et B en fonction de p

1-6- LES OPERATIONS SUR LES NOMBRES PAIRS ET IMPAIRS

EXERCICE

1- Soient a et b deux entiers pairs, étudier la parité de a+b, a-b, ab

2- Soient a et b deux entiers impairs, étudier la parité de a+b, a-b, ab

3- Soit n un entier, étudier la parité de n^2 selon les valeurs de n

2- LES MULTIPLES D'UN ENTIER NATUREL

2-1-DEFINITION

On dit que m est un multiple de n si et seulement si m est le produit d'un entier b par n, et on écrit $\,m=bn\,$

2-2-EXERCICE

1-montrer que 12×15 est un multiple de 30

- 2- Soient b un multiple de a et c un multiple de b, montre que c est un multiple de a
- 3-Soient b un multiple de a et c un multiple de a, montrer que $b+c,\ b-c,\ bc$ sont des multiple de a
- 4- Soient b et c des multiples de a, montrer que 2c+3b est un multiple de a
- 3- LES DIVISEURS D'UN ENTIER NATUREL

3-1-DEFINITION

On dit que l'entier a est un diviseur de l'entier b, si et seulement si b est un multiple de a, on dit que:

- a divise b, et on écrit a / b
- b est divisible par a
- il existe un entier q tel que $b = a \times q$

3-2-EXERCICE

1-Déterminer tous les diviseurs de 30, et calculer leur somme

2- Soit a un diviseur de b et c, montrer que a est un diviseur de b+c, b-c, bc

4- LES NOMBRES PREMIERS

4-1-DEFINITION

On dit que l'entier p est un nombre premier s'il admet seulement comme diviseur p et 1

4-2-EXEMPLE

Montrons que 127 est nombre premier, on sait que 2, 3, 5, 7, 11, 13, 17 sont des nombres premiers

4-3-REMARQUE

Pour déterminer qu'un entier n est premier, on divise n par tous les entiers premiers p tel que $p^2 \leq n$, si n n'est divisible par aucun entier premier p alors n est premier

4-4- EXERCICE

Déterminons tous les entiers premiers qui sont inférieurs à 100

4-5- DECOMPOSITION D'UN ENTIER EN PRODUIT DE FACTEURS PREMIERS

4-5-1- **EXEMPLE**

Décomposer 380 en produit de facteurs premiers

$$380 = 2 \times 190 = 2^2 \times 95 = 2^2 \times 5 \times 19$$

4-5-2-PROPRIETE

Tout entier naturel non premier plus grand que 1 peut se décomposer en produit de facteurs premiers

4-5-3- **EXERCICE**

Décomposer 270 en produit de facteurs premiers

5- LES DIVISEURS COMMUNS DE DEUX ENTIERS

5-1- DEFINITION

On dit que d est un diviseur commun de deux entiers naturels a et b, si et seulement si a et b sont divisible par d

5-2-EXERCICE

- 1- Décomposer 180 et 150 en produit de facteurs premiers
- 2- Déterminer tous les diviseurs de 180 et 150
- 3- Déterminer tous les diviseurs communs de 180 et 150
- 4- Déterminer le plus grand diviseur commun de 180 et 150

5-3- LE PLUS GRAND DIVISEUR COMMUN

5-3-1- DEFINITION

Soient a et b deux entiers naturels, le plus grand entiers qui divise à la fois a et b s'appelle le plus grand diviseur commun de a et b, et se note: pgdc(a,b); $a \wedge b$; $\Delta(a,b)$

5-3-2-EXEMPLE

Soit a=380 et b=132

On a
$$a = 2^2 \times 5 \times 19 = 2^2 \times 3^0 \times 5 \times 11^0 \times 19$$
 et $b = 2^2 \times 3 \times 5^0 \times 11 \times 19^0$

Donc
$$a \wedge b = 2^2 \times 3^0 \times 5^0 \times 11^0 \times 19^0 = 4$$

5-3-3- EXERCICE

- 1-a- Décomposer 120 et 75 en produit de facteurs premiers
 - b- Déterminer le $\it pgdc$ de 120 et 75
- 2- Déterminer le pqdc de a et b selon les valeurs de a et b dans les cas suivant
 - i- a=15 et b=75; ii- a=13 et b=49; iii- a=540 et b=336

5-3-3- PROPRIETE

Si $\Delta(a,b)=1$ alors a et b sont premiers entre eux

ARITHMETIQUE 1

6- LES MULTIPLES COMMUNS DE DEUX ENTIERS

6-1- DEFINITION

On dit que m est un multiple commun de deux entiers naturels a et b, si et seulement si m est un multiple de a et de b

6-2-EXERCICE

- 1- Déterminer les multiples de 15 et 25 qui sont inférieur à 200
- 2- Déterminer les multiples communs de 15 et 25 qui sont inférieur à 200
- 3- Déterminer le plus petit multiple commun de 15 et 25

6-3- LE PLUS PETIT MULTIPLE COMMUN

6-3-1- DEFINITION

Soient a et b deux entiers naturels, le plus petit multiple à la fois de a et de b s'appelle le plus petit multiple commun de a et b et se note: ppmc(a,b); $a \lor b$; M(a,b)

6-3-2-EXEMPLE

Soit a=380 et b=132

On a
$$a = 2^2 \times 5 \times 19 = 2^2 \times 3^0 \times 5 \times 11^0 \times 19$$
 et $b = 2^2 \times 3 \times 5^0 \times 11 \times 19^0$

Donc
$$a \lor b = 2^2 \times 3 \times 5 \times 11 \times 19$$

6-3-3- EXERCICE

- 1- a- Décomposer 300 et 126 en produit de facteurs premiers
 - b- Déterminer le ppmc de 300 et 126
- 2- Déterminer le ppmc des entiers a et b selon les valeurs de a et b

6-3-3- PROPRIETE

Si a et b sont premier entre eux alors $a \lor b = ab$

6-3-4- **EXEMPLE**

Soit a=196 et b=117

On a
$$a = 196 = 2^2 \times 7^2$$
 et $b = 117 = 3^2 \times 13$

Donc
$$a \lor b = 2^2 \times 3^2 \times 7^2 \times 13 = a \times b$$

6-3-4-EXERCICE

Soit n un entier naturel, étudier la parité des nombres suivant: A = 8n + 7;

$$B = (n+2)(n+3)$$
; $C = n^2 + n + 3$

Montrer que a est un multiple de b selon les valeurs de a et b dans les cas suivant:

ii-
$$a = 5^4 - 3^4$$
 et b=16

EX3

Soit A un entier naturel formé de deux

chiffres x et y tel que: $A = xy = x \times 10 + y$

et soit B = yx , montrer que A + B est divisible par 11

EX4

1-Déterminer $x \wedge y$ et $x \vee y$ selon les valeurs de x et y dans les cas suivant:

i- x=13 et y=17

ii- x=15 et y=25

iii- x=50 et y=35

2- Comparer les valeurs de $(x \wedge y) \times (x \vee y)$ et de xy dans chaque cas

EX5

1-Factoriser en facteurs premiers les entiers 1386 et 4620

2- Déterminer le ppmc et le pgdc de 1386 et 4620

EX6

Soit x un entier naturel

1- Développer $(x+1)^2 - x^2$

2- En déduire que tout entier impair peut s'écrire sous forme de la différence du carré de deux entiers successifs

3-Ecrire les nombres A = 17 et B = 2005comme différence du carré de deux entiers successifs

EX7

Soit n un entier naturel, posons

$$A=(-1)^n+(-1)^{n+2}+2$$
 , déterminer la

valeur de A selon la parité de n

EX8

posons A = 13xy tel que x est le chiffre des dizaines et y le chiffre des unités de A, déterminer x et y pour que A soit divisible

par 2 et 9

EX9

Soit n un entier naturel, déterminer n tel que: 8n < 90 < 8(n+3)

EX10

1- déterminer tous les diviseurs de 15

2- déterminer les entiers x et y tels que

$$(x+3)(y+2) = 15$$

3- déterminer tous les entiers a et b qui vérifient ab + 3a + b = 12

EX11

on considère les entiers a et b tels que:

$$a \wedge b = 24$$
 et $ab = 2880$

1- calculer $a \vee b$

2-en déduire les entiers a et b

EX12

soit n un entier naturel, étudier la divisibilité de A = n(n+1)(n+2) par 3 selon les valeurs de n

ARITHMETIQUE 1